Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 13(1): 3289, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1878528

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to spread globally, highlighting the urgent need for safe and effective vaccines that could be rapidly mobilized to immunize large populations. We report the preclinical development of a self-amplifying mRNA (SAM) vaccine encoding a prefusion stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein and demonstrate strong cellular and humoral immune responses at low doses in mice and rhesus macaques. The homologous prime-boost vaccination regimen of SAM at 3, 10 and 30 µg induced potent neutralizing antibody (nAb) titers in rhesus macaques following two SAM vaccinations at all dose levels, with the 10 µg dose generating geometric mean titers (GMT) 48-fold greater than the GMT of a panel of SARS-CoV-2 convalescent human sera. Spike-specific T cell responses were observed with all tested vaccine regimens. SAM vaccination provided protective efficacy against SARS-CoV-2 challenge as both a homologous prime-boost and as a single boost following ChAd prime, demonstrating reduction of viral replication in both the upper and lower airways. The SAM vaccine is currently being evaluated in clinical trials as both a homologous prime-boost regimen at low doses and as a boost following heterologous prime.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Macaca mulatta/genetics , Mice , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
4.
Methods ; 201: 49-64, 2022 05.
Article in English | MEDLINE | ID: covidwho-1213579

ABSTRACT

Sensitive detection of viral nucleic acids is critically important for diagnosis and monitoring of the progression of infectious diseases such as those caused by SARS-CoV2, HIV-1, and other viruses. In HIV-1 infection cases, assessing the efficacy of treatment interventions that are superimposed on combination antiretroviral therapy (cART) has benefited tremendously from the development of sensitive HIV-1 DNA and RNA quantitation assays. Simian immunodeficiency virus (SIV) infection of Rhesus macaques is similar in many key aspects to human HIV-1 infection and consequently this non-human primate (NHP) model has and continues to prove instrumental in evaluating HIV prevention, treatment and eradication approaches. Cell and tissue associated HIV-1 viral nucleic acids have been found to serve as useful predictors of disease outcome and indicators of treatment efficacy, highlighting the value of and the need for sensitive detection of viruses in cells/tissues from infected individuals or animal models. However, viral nucleic acid detection and quantitation in such sample sources can often be complicated by high nucleic acid input (that is required to detect ultralow level viruses in, for example, cure research) or inhibitors, leading to reduced detection sensitivity and under-quantification, and confounded result interpretation. Here, we present a step-by-step procedure to quantitatively recover cell/tissue associated viral DNA and RNA, using SIV-infected Rhesus macaque cells and tissues as model systems, and subsequently quantify the viral DNA and RNA with an ultrasensitive SIV droplet digital PCR (ddPCR) assay and reverse transcription ddPCR (RT-ddPCR) assay, respectively, on the Raindance ddPCR platform. The procedure can be readily adapted for a broad range of applications where highly sensitive nucleic acid detection and quantitation are required.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Nucleic Acids , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , DNA, Viral/genetics , HIV-1/genetics , Macaca mulatta/genetics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Simian Acquired Immunodeficiency Syndrome/diagnosis , Simian Immunodeficiency Virus/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL